Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4XUF_1)}(2) \setminus P_{f(5JDN_1)}(2)|=107\),
\(|P_{f(5JDN_1)}(2) \setminus P_{f(4XUF_1)}(2)|=59\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:010101100010110111011110110101011000110101110110001000000111001011001100001101111001011101110000010110010000001000010000000100000101101001101100110110110100010001110011100101101001111001100000110101011101111001101100100011001111101101110101111101010011001101001101000101110001110000010110100111001
Pair
\(Z_2\)
Length of longest common subsequence
4XUF_1,5JDN_1
166
4
4XUF_1,3FDY_1
169
4
5JDN_1,3FDY_1
199
4
Newick tree
[
3FDY_1:95.20,
[
4XUF_1:83,5JDN_1:83
]:12.20
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{599
}{\log_{20}
599}-\frac{297}{\log_{20}297})=84.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
4XUF_1
5JDN_1
105
103
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]