Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4XSQ_1)}(2) \setminus P_{f(2BBI_1)}(2)|=107\),
\(|P_{f(2BBI_1)}(2) \setminus P_{f(4XSQ_1)}(2)|=33\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101010000101010111101111100110011001101110000100100001011001011010000100100111001101001010000100100011011100101010011101100111000011111001111000110001001011111101100110001100100101000
Pair
\(Z_2\)
Length of longest common subsequence
4XSQ_1,2BBI_1
140
4
4XSQ_1,8QGE_1
170
3
2BBI_1,8QGE_1
192
3
Newick tree
[
8QGE_1:96.57,
[
4XSQ_1:70,2BBI_1:70
]:26.57
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{254
}{\log_{20}
254}-\frac{71}{\log_{20}71})=59.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
4XSQ_1
2BBI_1
77
52
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]