Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4XRX_1)}(2) \setminus P_{f(5WST_1)}(2)|=207\),
\(|P_{f(5WST_1)}(2) \setminus P_{f(4XRX_1)}(2)|=13\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100010110110101001001110110001111010101000011100001000010001101100001110010101000010010100110010101001111011001110001101101110111110010100001001111111010100010010001001100100111111110000001001100010111001111010000011000010100110010000000010100110000110011101100011111100000101000011010101111001110101001010110101000001000100000011101111001110010100000111110110010100101111000111010111010000010010110011001010110101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{485
}{\log_{20}
485}-\frac{71}{\log_{20}71})=125.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4XRX_1
5WST_1
167
96
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]