Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4XRR_1)}(2) \setminus P_{f(6YTP_1)}(2)|=48\),
\(|P_{f(6YTP_1)}(2) \setminus P_{f(4XRR_1)}(2)|=115\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:001111110110101101111111011001110111011011110001101101011000110111111100111010101000001111101111011010011001100011110001110101101111000101100001111110011110000111110100110111110100111111101100111100110011110100110100101101100111010111100110001111101101111100110100110111111111100100011111001000110100100101100011000111110011011000000011111111000010100011011111100011010110111011011101101111010011011101111110001001011111001001011101010111101001001111001110
Pair
\(Z_2\)
Length of longest common subsequence
4XRR_1,6YTP_1
163
4
4XRR_1,6JPK_1
169
4
6YTP_1,6JPK_1
152
4
Newick tree
[
4XRR_1:85.22,
[
6YTP_1:76,6JPK_1:76
]:9.22
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{953
}{\log_{20}
953}-\frac{456}{\log_{20}456})=131.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4XRR_1
6YTP_1
172
160
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]