Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4XRA_1)}(2) \setminus P_{f(7TWZ_1)}(2)|=55\),
\(|P_{f(7TWZ_1)}(2) \setminus P_{f(4XRA_1)}(2)|=117\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:011000101100011001011010000001010111101101011010011011000001001110100100000100011000000110100111101011100010010000111001011101011101101010111001001100101100111011010110100101011101011101
Pair
\(Z_2\)
Length of longest common subsequence
4XRA_1,7TWZ_1
172
3
4XRA_1,5FHS_1
148
3
7TWZ_1,5FHS_1
166
4
Newick tree
[
7TWZ_1:87.73,
[
4XRA_1:74,5FHS_1:74
]:13.73
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{492
}{\log_{20}
492}-\frac{186}{\log_{20}186})=89.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
4XRA_1
7TWZ_1
114
90
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]