Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4XPC_1)}(2) \setminus P_{f(6HAV_1)}(2)|=77\),
\(|P_{f(6HAV_1)}(2) \setminus P_{f(4XPC_1)}(2)|=94\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001011001101110011111110011111110100011010001100010111010100110011111000110011111001100000110010010001001010110100110111100010011010011101010100011111010010111010101001101100010110011000110101001011110010011111000100001001110011011001010010100001001101100100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{601
}{\log_{20}
601}-\frac{259}{\log_{20}259})=96.3\)
Status
Protein1
Protein2
d
d1/2
Query variables
4XPC_1
6HAV_1
123
109
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]