Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4XMW_1)}(2) \setminus P_{f(7LGN_1)}(2)|=57\),
\(|P_{f(7LGN_1)}(2) \setminus P_{f(4XMW_1)}(2)|=44\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:010100000001100010010101010100011011001100110011101010010110101000110110000111110011001010110010111001101100010110000010110010001001011101000111001001111001001101010010011010011101001111111010110001000010011101010010100111110010001010000111000101011111011011110001101100001110000100000101001110001001010010000110101001101100001000110011001001001011011001011101101011101001001010001101101100111000100110101000010110000110110010010100100100001011101000001000000101000011010010001101111101000010111100110110011010010001110010101111110010111010001000010111001000100101100111001010110000101101110110110111100010111110110110100110110110111110100110001100110011110010000000100001100010010101111100011011100010010010011111011111011000111000000100011110011110100111011001011100001010010010011111110011110100101011110110010000101100110111010000100000101110010110010101000100111
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1776
}{\log_{20}
1776}-\frac{867}{\log_{20}867})=222.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4XMW_1
7LGN_1
281
274.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]