Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4WZZ_1)}(2) \setminus P_{f(4KMW_1)}(2)|=133\),
\(|P_{f(4KMW_1)}(2) \setminus P_{f(4WZZ_1)}(2)|=40\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000000011011000101001100000000000010010011001101010010011110011010000000100011010110011001001010001001001100110011111000011011100100011011010010010000111001100011011101110101101011110110010000111011001100000001011110010000010000001111101010110110011111110110001101010101111100110011000000010111101101101110101011010101110001011000110010001011101100111111101010011011010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{508
}{\log_{20}
508}-\frac{137}{\log_{20}137})=109.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4WZZ_1
4KMW_1
135
92.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]