Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4WVL_1)}(2) \setminus P_{f(8JVL_1)}(2)|=142\),
\(|P_{f(8JVL_1)}(2) \setminus P_{f(4WVL_1)}(2)|=46\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11001010100111101110111111000000110011001011000110101110001110000001001001000000110010011010001101000100111001100100001001001000011010101000101110110010100001110110111011101111000000011001011100100100010011010100010001001011000100011000111100111110100010001101001101100011111010100001001101101101011010101010110001001000110001001001010000011000000
Pair
\(Z_2\)
Length of longest common subsequence
4WVL_1,8JVL_1
188
4
4WVL_1,4KPT_1
178
3
8JVL_1,4KPT_1
168
4
Newick tree
[
4WVL_1:93.91,
[
4KPT_1:84,8JVL_1:84
]:9.91
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{503
}{\log_{20}
503}-\frac{156}{\log_{20}156})=101.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4WVL_1
8JVL_1
131
92.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]