Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4WVI_1)}(2) \setminus P_{f(1ECS_1)}(2)|=170\),
\(|P_{f(1ECS_1)}(2) \setminus P_{f(4WVI_1)}(2)|=37\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000000000111111010010011101100100001101010010010001101110101101111100011101001111010100110001011010110001011101111011011000011101100100111101010101001111010010101111110110110000100010011100111011101110110000101000001101110010011010111110010000100110111010101001111110111011010001100110001100011011000011111110000001100101110100100101110110101110110011101101000100110010001111101001010010101001001110111000111001011110100000010011111100100000010101000001010001000010010101010011010100011101001111000010000011111000011101010110010100
Pair
\(Z_2\)
Length of longest common subsequence
4WVI_1,1ECS_1
207
3
4WVI_1,8CDU_1
243
3
1ECS_1,8CDU_1
112
2
Newick tree
[
4WVI_1:12.24,
[
1ECS_1:56,8CDU_1:56
]:70.24
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{659
}{\log_{20}
659}-\frac{126}{\log_{20}126})=153.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4WVI_1
1ECS_1
192
118.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]