Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4WUY_1)}(2) \setminus P_{f(1QUI_1)}(2)|=123\),
\(|P_{f(1QUI_1)}(2) \setminus P_{f(4WUY_1)}(2)|=58\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101011111001001101011011011011011100110101101000100000010000110001000011000100000011100100011111100101000101010111000101000100011110010001001000000110001111001000011110000111111010001101000010011011110111100000101110001011010110010110011000101101000000010000110000000000000010101001001101011001100100110010010000010011010010000100110000101101100111101010010111001001101000001100101101110110101110001110011001111101101000101001000100001000000
Pair
\(Z_2\)
Length of longest common subsequence
4WUY_1,1QUI_1
181
5
4WUY_1,9IQN_1
189
6
1QUI_1,9IQN_1
152
3
Newick tree
[
4WUY_1:97.40,
[
1QUI_1:76,9IQN_1:76
]:21.40
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{762
}{\log_{20}
762}-\frac{321}{\log_{20}321})=120.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4WUY_1
1QUI_1
152
130
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]