Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4WMJ_1)}(2) \setminus P_{f(3FLM_1)}(2)|=78\),
\(|P_{f(3FLM_1)}(2) \setminus P_{f(4WMJ_1)}(2)|=68\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010101000110001000000010010110110001001000010110100101110000001000010111011000010010011111001010000111011100000011110100101010111101001000110111010010110011011111001111110011010100101011001010011011001010011111100010000010010010011101100111100011110001001011110100111110111100011011110101011100100110110110001001110001111111111101010110001111000010011101001010001001000110100001111110110010011001100100111001111100001110110001111011100011101000101010100011110111011100110100100011100101101111111000011001111010010011101100110110101001001000010001110110001
Pair
\(Z_2\)
Length of longest common subsequence
4WMJ_1,3FLM_1
146
4
4WMJ_1,5NSF_1
171
4
3FLM_1,5NSF_1
173
4
Newick tree
[
5NSF_1:89.91,
[
4WMJ_1:73,3FLM_1:73
]:16.91
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1112
}{\log_{20}
1112}-\frac{556}{\log_{20}556})=143.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4WMJ_1
3FLM_1
186
183.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]