Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4WKW_1)}(2) \setminus P_{f(7NHJ_1)}(2)|=82\),
\(|P_{f(7NHJ_1)}(2) \setminus P_{f(4WKW_1)}(2)|=90\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000001101010001110110010100010111011011011000111010010010101011011110000001000010010011111011111001011011011001111010000000100110001100111101111100010001100000111011100110101010111111111001101001101101010111010110100000011011
Pair
\(Z_2\)
Length of longest common subsequence
4WKW_1,7NHJ_1
172
6
4WKW_1,6YCJ_1
160
4
7NHJ_1,6YCJ_1
168
3
Newick tree
[
7NHJ_1:86.61,
[
4WKW_1:80,6YCJ_1:80
]:6.61
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{474
}{\log_{20}
474}-\frac{228}{\log_{20}228})=71.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
4WKW_1
7NHJ_1
88
87
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]