Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4USX_1)}(2) \setminus P_{f(3DXC_1)}(2)|=90\),
\(|P_{f(3DXC_1)}(2) \setminus P_{f(4USX_1)}(2)|=57\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11010110011010111001011010001011111011111001111010001101101111001111111101001110110001001010000110111110110001100101000010001111001111101110011011110111000111010001011000111001110101111110001001111011000001101001010000101100010011001100110110001001110111001111010110011001101010001111101001111101110010001111001001100011011111100010011110010011011010110000100111110000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{511
}{\log_{20}
511}-\frac{140}{\log_{20}140})=109.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4USX_1
3DXC_1
121
86.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]