Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4USU_1)}(2) \setminus P_{f(2MAU_1)}(2)|=238\),
\(|P_{f(2MAU_1)}(2) \setminus P_{f(4USU_1)}(2)|=7\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001000100111101110110111010101001110010111111010110110001001101001100110110001011100111111011011101111110100001001101110001010111000010011010101111110101111100000011111011001011001101001110100101000011010011000110101101110101001100000110001010000110110010101010101000110011001000010101001011011110111000001001111100101010011011010100111100100110111111001100100110011011010001001001011110111101111001000001110010111011100111100001000100111011001100110111001110001100001000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{505
}{\log_{20}
505}-\frac{30}{\log_{20}30})=147.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4USU_1
2MAU_1
186
98.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]