Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4UHN_1)}(2) \setminus P_{f(5VUE_1)}(2)|=104\),
\(|P_{f(5VUE_1)}(2) \setminus P_{f(4UHN_1)}(2)|=52\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000000000111101001000101110111010101011110100010001011111010111000100100010111001110000011011100110100011100101101011001101011010011101010001000101101010101010000111010100110111001111110001111110100110010111110011100111011001101101001001111110110101111111010100100100100111110011011101101011001110101101100100111111111100010001100011001101101000010111011111110110000110001011101001101101000110100011111101110010111011010101100110101110010111010101001001101110110111
Pair
\(Z_2\)
Length of longest common subsequence
4UHN_1,5VUE_1
156
3
4UHN_1,2RDQ_1
161
4
5VUE_1,2RDQ_1
169
4
Newick tree
[
2RDQ_1:83.97,
[
4UHN_1:78,5VUE_1:78
]:5.97
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{744
}{\log_{20}
744}-\frac{276}{\log_{20}276})=129.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4UHN_1
5VUE_1
163
129.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]