Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4UAN_1)}(2) \setminus P_{f(5THE_1)}(2)|=62\),
\(|P_{f(5THE_1)}(2) \setminus P_{f(4UAN_1)}(2)|=139\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000001111010010101001101011011001010111111010010010101000101010101011000100010010000101110000010001110000101011011010000011100010111001101111100010111010001110011100011001101010110010111100100000101010011000011101100100110001111100111011110111111110000100000111111111000010111001000010010000
Pair
\(Z_2\)
Length of longest common subsequence
4UAN_1,5THE_1
201
4
4UAN_1,8WDY_1
189
4
5THE_1,8WDY_1
144
4
Newick tree
[
4UAN_1:10.68,
[
8WDY_1:72,5THE_1:72
]:32.68
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{842
}{\log_{20}
842}-\frac{293}{\log_{20}293})=149.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4UAN_1
5THE_1
190
145.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]