Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4TRH_1)}(2) \setminus P_{f(3IQZ_1)}(2)|=126\),
\(|P_{f(3IQZ_1)}(2) \setminus P_{f(4TRH_1)}(2)|=44\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11101101101001000001010000010111111110011100000011011011010100110000100010000001000101100000101010001100010010010001011011000000000100100111101101100110000011110101000001001001110100010000010001111100111001000111000010110000100010001100000000101000000100110010001100110001000010100010100100001100111100000110110011010100011110100110011001000001001010100111010100000010010110110001010011001001100110101110001000010111001101000001000100000010001010011110100010110001010001101100000100111011000011001000010000011101000100100011011100010011001110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{825
}{\log_{20}
825}-\frac{283}{\log_{20}283})=148.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4TRH_1
3IQZ_1
190
141
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]