Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4TQU_1)}(2) \setminus P_{f(4YGE_1)}(2)|=89\),
\(|P_{f(4YGE_1)}(2) \setminus P_{f(4TQU_1)}(2)|=84\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001100100011101111101111111100111110111000011011110111110011011000011011000101011011111111111111100100010001100110110110111111111011010011100110111100101100101101101000110011100110111110101110001010110010110010110111011111110110110111001111001000001011000100111011000110111110111111111110010001000111
Pair
\(Z_2\)
Length of longest common subsequence
4TQU_1,4YGE_1
173
4
4TQU_1,5YKZ_1
142
5
4YGE_1,5YKZ_1
159
3
Newick tree
[
4YGE_1:86.72,
[
4TQU_1:71,5YKZ_1:71
]:15.72
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{547
}{\log_{20}
547}-\frac{246}{\log_{20}246})=85.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
4TQU_1
4YGE_1
108
99.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]