Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4RLW_1)}(2) \setminus P_{f(7BZN_1)}(2)|=55\),
\(|P_{f(7BZN_1)}(2) \setminus P_{f(4RLW_1)}(2)|=125\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11101011110000100001000010001111000011010001110110011111101101110010111100101101010110100110100111110010001010010010100111000110000101100000011101100101100111
Pair
\(Z_2\)
Length of longest common subsequence
4RLW_1,7BZN_1
180
3
4RLW_1,2KYS_1
136
3
7BZN_1,2KYS_1
184
3
Newick tree
[
7BZN_1:97.47,
[
4RLW_1:68,2KYS_1:68
]:29.47
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{456
}{\log_{20}
456}-\frac{158}{\log_{20}158})=88.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
4RLW_1
7BZN_1
113
85
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]