Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4QZB_1)}(2) \setminus P_{f(5LQQ_1)}(2)|=30\),
\(|P_{f(5LQQ_1)}(2) \setminus P_{f(4QZB_1)}(2)|=127\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100000000001111010010101111000111111001000100000010000011001101110000100001001111010011001111100100001110110010011011100100001011100000001011001111110010011011100100100000101001001111000011001001010110111001110111011101011100101010010111001010000000110010011000111100011000100100100010110010001111010010100000100010110110101110100001111111010001000100010000011100011000000111010000011101110010110001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1227
}{\log_{20}
1227}-\frac{400}{\log_{20}400})=215.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4QZB_1
5LQQ_1
274
200.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]