Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4PVR_1)}(2) \setminus P_{f(3GHC_1)}(2)|=101\),
\(|P_{f(3GHC_1)}(2) \setminus P_{f(4PVR_1)}(2)|=54\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010111110111111100000001001110110110111001101101101111110001010110101100010101010110100101111011001101101101110001001100011101111111101110011000000010000000110000000011011111100010110100011110011101100101111101000111100010100110101101011010010010011010110100010111111110001011101000011111100101011101000010011
Pair
\(Z_2\)
Length of longest common subsequence
4PVR_1,3GHC_1
155
3
4PVR_1,3LDP_1
148
3
3GHC_1,3LDP_1
163
4
Newick tree
[
3GHC_1:81.28,
[
4PVR_1:74,3LDP_1:74
]:7.28
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{496
}{\log_{20}
496}-\frac{186}{\log_{20}186})=90.2\)
Status
Protein1
Protein2
d
d1/2
Query variables
4PVR_1
3GHC_1
108
86.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]