Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4PTG_1)}(2) \setminus P_{f(7DTJ_1)}(2)|=136\),
\(|P_{f(7DTJ_1)}(2) \setminus P_{f(4PTG_1)}(2)|=42\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000000000100101010101010000110000110010111010100000100100111011011001001000000111010111100101000101111001100001000010110010000110100110001000001010111001100100110000010001111010101001100110100111000010100111010011101001101001101010100100000011011111000000101101101110111101111100110011011011101000010010100001011010101100110100110111100011000101010110101001100100101011010001111010000100011110111110101011100100101100100100100001101010000
Pair
\(Z_2\)
Length of longest common subsequence
4PTG_1,7DTJ_1
178
6
4PTG_1,6INY_1
160
3
7DTJ_1,6INY_1
212
4
Newick tree
[
7DTJ_1:10.14,
[
4PTG_1:80,6INY_1:80
]:23.14
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{623
}{\log_{20}
623}-\frac{182}{\log_{20}182})=125.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4PTG_1
7DTJ_1
159
111.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]