Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4PMM_1)}(2) \setminus P_{f(5XXP_1)}(2)|=135\),
\(|P_{f(5XXP_1)}(2) \setminus P_{f(4PMM_1)}(2)|=23\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:010010000111010110111101111000011100001111101100100010001000101101100001101111000101111110010010100110001101011111001111111110111110011111101111011000110000111011110110111000100000001110011110111100110001000001101111110110010011001000011001001001001010110101110101000100000100101010111010000
Pair
\(Z_2\)
Length of longest common subsequence
4PMM_1,5XXP_1
158
5
4PMM_1,3EAY_1
178
3
5XXP_1,3EAY_1
190
4
Newick tree
[
3EAY_1:96.00,
[
4PMM_1:79,5XXP_1:79
]:17.00
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{392
}{\log_{20}
392}-\frac{101}{\log_{20}101})=89.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
4PMM_1
5XXP_1
113
74.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]