Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4PGT_1)}(2) \setminus P_{f(5JKB_1)}(2)|=69\),
\(|P_{f(5JKB_1)}(2) \setminus P_{f(4PGT_1)}(2)|=100\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111001101110100111011110010010001101001001010100101011010010101000001100110011101000001111011001100100001011000001100001011110101100110000110011110010110001101111001111101011111010110101010101111010010111010100
Pair
\(Z_2\)
Length of longest common subsequence
4PGT_1,5JKB_1
169
4
4PGT_1,4RTZ_1
142
2
5JKB_1,4RTZ_1
173
4
Newick tree
[
5JKB_1:89.82,
[
4PGT_1:71,4RTZ_1:71
]:18.82
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{431
}{\log_{20}
431}-\frac{210}{\log_{20}210})=64.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
4PGT_1
5JKB_1
85
80
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]