Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4PGA_1)}(2) \setminus P_{f(5UKM_1)}(2)|=37\),
\(|P_{f(5UKM_1)}(2) \setminus P_{f(4PGA_1)}(2)|=126\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0010000011011111011011111101100100011011100111111011011010100110110001000011011001101100001011110010001000101101100000111111010110110101110100111110000001011110100010010010001010001100111111111010001101110000100010100100110101100010100010011100110111011010101000111110010001001100001001111100100100000111100101001011111110000000010011100
Pair
\(Z_2\)
Length of longest common subsequence
4PGA_1,5UKM_1
163
4
4PGA_1,4GCP_1
140
4
5UKM_1,4GCP_1
189
4
Newick tree
[
5UKM_1:93.53,
[
4PGA_1:70,4GCP_1:70
]:23.53
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1032
}{\log_{20}
1032}-\frac{337}{\log_{20}337})=185.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4PGA_1
5UKM_1
233
171.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]