Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4PEI_1)}(2) \setminus P_{f(3UVJ_1)}(2)|=121\),
\(|P_{f(3UVJ_1)}(2) \setminus P_{f(4PEI_1)}(2)|=67\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11110001001111101010000100010000000100101110010100100010110101110000110101000100011010111110000001110100111101010011100010101101111011000100001000110100110110000011011001000001010100011011110100001001011100011011011001110010100110101000001001100111110110001100101110000010000011001110111100010110100010011000000100011011000111011000001010100001010010001010
Pair
\(Z_2\)
Length of longest common subsequence
4PEI_1,3UVJ_1
188
3
4PEI_1,8SBQ_1
154
3
3UVJ_1,8SBQ_1
176
4
Newick tree
[
3UVJ_1:95.27,
[
4PEI_1:77,8SBQ_1:77
]:18.27
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{581
}{\log_{20}
581}-\frac{225}{\log_{20}225})=101.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4PEI_1
3UVJ_1
133
107.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]