Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4OST_1)}(2) \setminus P_{f(3TXN_1)}(2)|=34\),
\(|P_{f(3TXN_1)}(2) \setminus P_{f(4OST_1)}(2)|=125\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010110110111011101011110100101101100111011011011001101111010100111110001100110010011111001011010011111000110011001001111100101101001111100011001100101111110010110100111110011100110010011111001011010011111001110011001001111100101101001111100111001100100111110010110100111110001100110010011111001011010011111001110011001001111100101101001111100011001100100111110010110100111110011100110010011111001011010011111000110011001001111100101101001111100111011100111010010111111000011111011101110110010000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{893
}{\log_{20}
893}-\frac{394}{\log_{20}394})=133.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4OST_1
3TXN_1
140
100
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]