Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4OHZ_1)}(2) \setminus P_{f(8RPE_1)}(2)|=166\),
\(|P_{f(8RPE_1)}(2) \setminus P_{f(4OHZ_1)}(2)|=24\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10010000100111000001011110000101011010101110011100000111000111101011010111000010110001111010101110010000000111000010110111111001100010011000010010011110101100010111011111100010110110000111101100010101010011100110010101000001011111100011101010001101101101011111000010001000110110100110011100001010001010010001010010010110101010010100111001100011111010000001111010101000111100000100011001111101100101000010110100011001111001001000100
Pair
\(Z_2\)
Length of longest common subsequence
4OHZ_1,8RPE_1
190
4
4OHZ_1,3QNW_1
186
4
8RPE_1,3QNW_1
148
4
Newick tree
[
4OHZ_1:99.78,
[
3QNW_1:74,8RPE_1:74
]:25.78
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{563
}{\log_{20}
563}-\frac{132}{\log_{20}132})=126.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4OHZ_1
8RPE_1
160
102
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]