Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4OGH_1)}(2) \setminus P_{f(5KDT_1)}(2)|=90\),
\(|P_{f(5KDT_1)}(2) \setminus P_{f(4OGH_1)}(2)|=89\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0111101101101111011000001001111100100110001101101101111100101000111100011111111111001001001110111011100001000010000101001000111101010011010111110111101100001100101001001001110000010000001001001100101110010011101110001101011011101101011011010101101000
Pair
\(Z_2\)
Length of longest common subsequence
4OGH_1,5KDT_1
179
3
4OGH_1,4XXB_1
174
3
5KDT_1,4XXB_1
181
3
Newick tree
[
5KDT_1:90.97,
[
4OGH_1:87,4XXB_1:87
]:3.97
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{535
}{\log_{20}
535}-\frac{250}{\log_{20}250})=81.2\)
Status
Protein1
Protein2
d
d1/2
Query variables
4OGH_1
5KDT_1
104
99.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]