Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4NZW_1)}(2) \setminus P_{f(4HNK_1)}(2)|=102\),
\(|P_{f(4HNK_1)}(2) \setminus P_{f(4NZW_1)}(2)|=50\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111000011011001000111100001000010010001000111100110100000100011101100100011100111010110101000110110011000110001010010000011111101000101110011110001000111011110001001100101001011001110100110000110101100000011000001100000100000101110111000010110001001001011101100000010101101101111010000111011100010110110010000000001000000110010010
Pair
\(Z_2\)
Length of longest common subsequence
4NZW_1,4HNK_1
152
3
4NZW_1,2LQO_1
188
3
4HNK_1,2LQO_1
164
6
Newick tree
[
2LQO_1:91.91,
[
4NZW_1:76,4HNK_1:76
]:15.91
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{550
}{\log_{20}
550}-\frac{219}{\log_{20}219})=94.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
4NZW_1
4HNK_1
119
97.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]