Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4MYT_1)}(2) \setminus P_{f(2MNQ_1)}(2)|=235\),
\(|P_{f(2MNQ_1)}(2) \setminus P_{f(4MYT_1)}(2)|=3\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1110100010010011111010110000000110001010011010011101011000000110101110001100001011001101010101000101101111110000110100001100100001101111001000110111110010001110111101111000010111011010100010011001001111000100100000011011101000111001010010000111110010101010111110110001101110111001101101111010010101101010101111111101110101101011010010100100100000100001101101010000010010110111111100010100111001101110010110111011101000100001001110110001010100010010011011101010111001000101010110101100001001101010110001101001010101011101011011011111111000111100110011001111111110101010010000100011110111011100110010111101110101001000110111010100101111010101011011111101110100100000101011111000001100100011010
Pair
\(Z_2\)
Length of longest common subsequence
4MYT_1,2MNQ_1
238
4
4MYT_1,1AHG_1
136
5
2MNQ_1,1AHG_1
202
3
Newick tree
[
2MNQ_1:12.24,
[
4MYT_1:68,1AHG_1:68
]:53.24
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{720
}{\log_{20}
720}-\frac{29}{\log_{20}29})=205.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4MYT_1
2MNQ_1
252
131
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]