Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4LXY_1)}(2) \setminus P_{f(2POT_1)}(2)|=64\),
\(|P_{f(2POT_1)}(2) \setminus P_{f(4LXY_1)}(2)|=125\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1011010111000111001011100010100111110000011001000110111000101101001001001111010100110100100001101010111000111001011100010011010010011001011000011101000100101001001001100010011000000100001000010000101100101000010100010111100001111000011001110011100110010001110110110111001001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{660
}{\log_{20}
660}-\frac{274}{\log_{20}274})=107.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4LXY_1
2POT_1
139
116.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]