Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4LSV_1)}(2) \setminus P_{f(1XSD_1)}(2)|=202\),
\(|P_{f(1XSD_1)}(2) \setminus P_{f(4LSV_1)}(2)|=1\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100100011010010100001001110010110010100111101000101100011001000110110001010101011011001010101011110001111111100000010101100010010000110111000111010110001110000100010011101000101100010011010110100100010000100010011001100110001010100110101000010001011000000110100001000001000010101000100110110011011011110101000001011111001100000000001011110100010001000011010
Pair
\(Z_2\)
Length of longest common subsequence
4LSV_1,1XSD_1
203
2
4LSV_1,7FSR_1
193
3
1XSD_1,7FSR_1
132
2
Newick tree
[
4LSV_1:10.81,
[
7FSR_1:66,1XSD_1:66
]:41.81
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{374
}{\log_{20}
374}-\frac{16}{\log_{20}16})=116.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4LSV_1
1XSD_1
152
78.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]