Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4LSK_1)}(2) \setminus P_{f(2DLW_1)}(2)|=14\),
\(|P_{f(2DLW_1)}(2) \setminus P_{f(4LSK_1)}(2)|=82\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0001001111110001100001100011110111010011011010100011110101011100101011100101111000010000101100110110111011101110110101011101100010001111111111110110001111111000111001100000010101110001000000111101010001111110000100010000011101110001010000100110011001101111011011000100111101101101110110011000111111101100110010111110100111101011100001000001011111101101100111110000001011011101011100011011110110100100011111111111000000111101011100000111000111101111000001101111111001101101001111011011010011001100001010011011001011011010111111010111010010001110001001110101111110101011101100011110100001010111111001011000110010111111101011110101000111001110110111111111011011110000011110110110111101010111010011111111010011011011111011001000110001000101101001111010111110101111110111001110011101000111011000101000011101101010100111000001110000001111100111100110101001110101001000111111010110010111100111100011111110011011111000101011101101111010101100011000111101101011111100001001110000110101001111110001110111110001111010000101111111100001101011101001010110010010011000101001011110100111001110000101101110101100000100100110010011011000110011101000011011110010001011111011111111111111110110100011001101011000001011000111011010101010010110100010010111101101001000110110111111001100101111111011100011000111001111000101100011000010111100111100100110110010111001100101001011011101010000011100001010101001000100101001011111011100001000111100100111110001011101110100111110111100010110011110111100101101111011001010011111101011001110010000000000
Pair
\(Z_2\)
Length of longest common subsequence
4LSK_1,2DLW_1
96
2
4LSK_1,2XFP_1
263
3
2DLW_1,2XFP_1
213
4
Newick tree
[
2XFP_1:13.35,
[
4LSK_1:48,2DLW_1:48
]:87.35
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1635
}{\log_{20}
1635}-\frac{113}{\log_{20}113})=401.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4LSK_1
2DLW_1
272
163.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]