Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4LNS_1)}(2) \setminus P_{f(2AWE_1)}(2)|=205\),
\(|P_{f(2AWE_1)}(2) \setminus P_{f(4LNS_1)}(2)|=2\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110010000111000110100010011000101101011111011010000101100110111011101010110011010000110001111011000101101001100100111001010111000000111100110010111000011100000001111001011010011110101010000001100011111111111100100001011000010011010011110000111010010010110101110010100010100111010101100010101000110001000110101100111111000111111000011010001110010000011
Pair
\(Z_2\)
Length of longest common subsequence
4LNS_1,2AWE_1
207
2
4LNS_1,7UDP_1
164
3
2AWE_1,7UDP_1
231
2
Newick tree
[
2AWE_1:11.44,
[
4LNS_1:82,7UDP_1:82
]:35.44
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{357
}{\log_{20}
357}-\frac{6}{\log_{20}6})=116.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4LNS_1
2AWE_1
151
76.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]