4LKC_1|Chain A|Fab fragment of PCSK9 antibody|Homo sapiens (9606)
>9DNZ_1|Chains A, B[auth C]|H(+)/Cl(-) exchange transporter 3|Homo sapiens (9606)
>5PTS_1|Chains A, B|Bromodomain-containing protein 1|Homo sapiens (9606)
Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4LKC_1)}(2) \setminus P_{f(9DNZ_1)}(2)|=29\),
\(|P_{f(9DNZ_1)}(2) \setminus P_{f(4LKC_1)}(2)|=185\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101000100101011001010001001100111100001101101110010010011100101010100101010010100110000001000110110100101000111101111110000100101011011001010010101010011001000001000000000001000101001000000101001000110011000100100
Pair
\(Z_2\)
Length of longest common subsequence
4LKC_1,9DNZ_1
214
3
4LKC_1,5PTS_1
166
4
9DNZ_1,5PTS_1
226
3
Newick tree
[
9DNZ_1:11.68,
[
4LKC_1:83,5PTS_1:83
]:34.68
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1032
}{\log_{20}
1032}-\frac{214}{\log_{20}214})=221.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4LKC_1
9DNZ_1
279
174.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]