Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4KZB_1)}(2) \setminus P_{f(6PBP_1)}(2)|=84\),
\(|P_{f(6PBP_1)}(2) \setminus P_{f(4KZB_1)}(2)|=90\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100100110001011100001111111110010100101101011000110000110110100010111110111010101001000011010100101101101100011111101100100000110100010111111000101000111111111010110100110001101101000110111100000111000101101011110101011000100110110001011010000100110110000100101001111011011101001101000011111011011011011101011000110111100111110001111111000010110101110110110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{807
}{\log_{20}
807}-\frac{358}{\log_{20}358})=121.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4KZB_1
6PBP_1
152
139.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]