Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4KQK_1)}(2) \setminus P_{f(5XDM_1)}(2)|=129\),
\(|P_{f(5XDM_1)}(2) \setminus P_{f(4KQK_1)}(2)|=35\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10010111001111010111010001011101110110100111011111110101011001111101001110011110101101111101001001101111011101011011101011111101011010101111111001010111101000000110011011111011110001111110110100100111111011100100010110011110010100110110011110111101111111001111110111000111110011111010111001010011011110101010101110110101111111110110111001101110011110101010
Pair
\(Z_2\)
Length of longest common subsequence
4KQK_1,5XDM_1
164
3
4KQK_1,2KYA_1
182
3
5XDM_1,2KYA_1
96
3
Newick tree
[
4KQK_1:96.10,
[
5XDM_1:48,2KYA_1:48
]:48.10
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{475
}{\log_{20}
475}-\frac{119}{\log_{20}119})=106.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4KQK_1
5XDM_1
131
86
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]