Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4KJP_1)}(2) \setminus P_{f(5LXD_1)}(2)|=66\),
\(|P_{f(5LXD_1)}(2) \setminus P_{f(4KJP_1)}(2)|=99\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000110011000001111111111110111111111001111100001111100100011110111100111111101110001101110111010111000011011011110111111011111111001101011101101110110101001000111011111111110111111111100101010001101011111111001100110001111011010011100111011111111111111001111100110010110100111111111110111111111001111011111011010111111111101100110100111111111111110111011111110111000101101111111111110101110111111010000011111110111101110101101100111100110001000
Pair
\(Z_2\)
Length of longest common subsequence
4KJP_1,5LXD_1
165
4
4KJP_1,3GWI_1
164
3
5LXD_1,3GWI_1
185
3
Newick tree
[
5LXD_1:89.44,
[
4KJP_1:82,3GWI_1:82
]:7.44
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{854
}{\log_{20}
854}-\frac{408}{\log_{20}408})=119.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4KJP_1
5LXD_1
148
146.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]