Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4KIB_1)}(2) \setminus P_{f(2DQF_1)}(2)|=149\),
\(|P_{f(2DQF_1)}(2) \setminus P_{f(4KIB_1)}(2)|=33\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000000000111101001000100101001110110001100111111011110010001010100111000100111111101110111100011011111010010000011011001010110011011100000101000011110010001000010111111101110010011011010100110110011110111101101111110001110111001011010100100101010110101100111100111000010010010111101001111010001111000111101110110011110110100101110011100100011001010111010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{464
}{\log_{20}
464}-\frac{107}{\log_{20}107})=107.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4KIB_1
2DQF_1
134
84.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]