Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4JWI_1)}(2) \setminus P_{f(2CMK_1)}(2)|=69\),
\(|P_{f(2CMK_1)}(2) \setminus P_{f(4JWI_1)}(2)|=64\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111101011011100111110011100001100000110010000011010110100001100001101010110111011101010101010111010100000100001010100110000100110010101010001001100000100110000001001100111000011001101100110100011101010011010001101100001
Pair
\(Z_2\)
Length of longest common subsequence
4JWI_1,2CMK_1
133
3
4JWI_1,3RVC_1
157
4
2CMK_1,3RVC_1
126
3
Newick tree
[
4JWI_1:75.71,
[
2CMK_1:63,3RVC_1:63
]:12.71
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{446
}{\log_{20}
446}-\frac{219}{\log_{20}219})=66.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
4JWI_1
2CMK_1
82
81
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]