Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4JWH_1)}(2) \setminus P_{f(7SHW_1)}(2)|=79\),
\(|P_{f(7SHW_1)}(2) \setminus P_{f(4JWH_1)}(2)|=74\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100000011000011011000000001010000000011100011001000001011000010100000010000000010110110000001011011100101110011001100001001000100000100011011011100111010000011101000010000100000100100000011010100000100100001011111100000001000010001100101110001010000110100110110111000010011101110001111000001010000000000000010000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{623
}{\log_{20}
623}-\frac{310}{\log_{20}310})=87.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
4JWH_1
7SHW_1
108
108
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]