Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4JPB_1)}(2) \setminus P_{f(5QBT_1)}(2)|=83\),
\(|P_{f(5QBT_1)}(2) \setminus P_{f(4JPB_1)}(2)|=73\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001111011100110110011001000101110100001000110011011101100110011010000110101111011101000100111010001011000011001100111000011010000110111111000001001010111101100110010101010000001001010111011110111101001101111101001101000010010000111101011110011011010000010010111101100001111001110001110011011001001011111101011111010111
Pair
\(Z_2\)
Length of longest common subsequence
4JPB_1,5QBT_1
156
4
4JPB_1,1NVT_1
132
4
5QBT_1,1NVT_1
150
4
Newick tree
[
5QBT_1:79.71,
[
4JPB_1:66,1NVT_1:66
]:13.71
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{649
}{\log_{20}
649}-\frac{319}{\log_{20}319})=91.4\)
Status
Protein1
Protein2
d
d1/2
Query variables
4JPB_1
5QBT_1
113
112.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]