Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4JJZ_1)}(2) \setminus P_{f(4HYG_1)}(2)|=125\),
\(|P_{f(4HYG_1)}(2) \setminus P_{f(4JJZ_1)}(2)|=40\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001100101101101011101101111000010101000101010100010001010111101101011101000001110011101100111010010111011101111111010111100101010101011001001111110001001011010100101001101000110011111110101110001101011001110101100110100010011110000101101101010101111100110101100100011110111110110100011100011011001100111110111001001000011101010111101011010111100011000101100111010001001101111111110111000010101100101011101110011101101110110011001000100101100101010001101100101101100010100110000011010111111000001000100110100101010010101111111110111101111100111001010101110111
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{860
}{\log_{20}
860}-\frac{301}{\log_{20}301})=151.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4JJZ_1
4HYG_1
192
144.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]