Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4JEU_1)}(2) \setminus P_{f(5BYM_1)}(2)|=120\),
\(|P_{f(5BYM_1)}(2) \setminus P_{f(4JEU_1)}(2)|=48\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11110111100110011001000101011110010101100000100110011011001000001110101101101000010011001001101000110111000010111001100011011001001011111000010010010010010010010100111001100110101010001110001000001111011000101001001011011001000111100110100111001010110001111000100000011101010011100000111110000110100010001001000001001000010010011001100000100000010110001000010100100100011110010100100110111111101010000010111101110011000010011001011100001100110111111000010000010000010000001001011100110001000100000101000001010001101001010000111000011011111111101001001001001010101111000110100110010010000001
Pair
\(Z_2\)
Length of longest common subsequence
4JEU_1,5BYM_1
168
4
4JEU_1,8EWB_1
176
4
5BYM_1,8EWB_1
168
4
Newick tree
[
8EWB_1:86.68,
[
4JEU_1:84,5BYM_1:84
]:2.68
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{990
}{\log_{20}
990}-\frac{400}{\log_{20}400})=156.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4JEU_1
5BYM_1
201
163
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]