Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4JDT_1)}(2) \setminus P_{f(2VEC_1)}(2)|=106\),
\(|P_{f(2VEC_1)}(2) \setminus P_{f(4JDT_1)}(2)|=66\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100100011010010100000001110010110010100101001000101100011001000110110001010101011011001010101011110000111011100000010101100010010000110111000111010110001110000100010011101000101000010011010110100100010100100110010001000100001110110110101010010001011000000110000110001010010101100100110110101011011110101001001011110001110000000101111010001000100001101010000000
Pair
\(Z_2\)
Length of longest common subsequence
4JDT_1,2VEC_1
172
6
4JDT_1,1RFP_1
186
3
2VEC_1,1RFP_1
178
3
Newick tree
[
1RFP_1:92.63,
[
4JDT_1:86,2VEC_1:86
]:6.63
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{617
}{\log_{20}
617}-\frac{256}{\log_{20}256})=101.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4JDT_1
2VEC_1
126
108.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]