Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4JAT_1)}(2) \setminus P_{f(4HMM_1)}(2)|=125\),
\(|P_{f(4HMM_1)}(2) \setminus P_{f(4JAT_1)}(2)|=51\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10111111111110000000100011011110000011001011101010011111000101001101001110011011101111110010101001011101010111110101011101110101001111111011111111010001011100111110101001001110101001110111101111111110001001011110110000010100101111011001101010101001100011001001101001000011111001111011011100111110110101001101101001011011000100011010111111111110001111010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{485
}{\log_{20}
485}-\frac{132}{\log_{20}132})=104.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4JAT_1
4HMM_1
129
88.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]