Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4IUU_1)}(2) \setminus P_{f(4IOC_1)}(2)|=87\),
\(|P_{f(4IOC_1)}(2) \setminus P_{f(4IUU_1)}(2)|=51\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:010111010010001100100110001100101010101011000000110100010000111010001010110111010000001100010110100110001000011110001000000111001000100
Pair
\(Z_2\)
Length of longest common subsequence
4IUU_1,4IOC_1
138
3
4IUU_1,3QXE_1
158
3
4IOC_1,3QXE_1
158
3
Newick tree
[
3QXE_1:82.06,
[
4IUU_1:69,4IOC_1:69
]:13.06
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{230
}{\log_{20}
230}-\frac{95}{\log_{20}95})=43.6\)
Status
Protein1
Protein2
d
d1/2
Query variables
4IUU_1
4IOC_1
57
47
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]