Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4IGF_1)}(2) \setminus P_{f(3HWR_1)}(2)|=90\),
\(|P_{f(3HWR_1)}(2) \setminus P_{f(4IGF_1)}(2)|=73\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000000001011111100010111110010000101111111110011100000101000111000001011011110101001001000000000001100001001101100001010111001101001000110000010101100000011010001101101000110100010001111011110010111000001110011000010100101111000110110010000000000000000001001100010000000010000011001100000011100011000110110111000001101001010011011111001000000
Pair
\(Z_2\)
Length of longest common subsequence
4IGF_1,3HWR_1
163
6
4IGF_1,3QPL_1
156
6
3HWR_1,3QPL_1
161
6
Newick tree
[
3HWR_1:81.97,
[
4IGF_1:78,3QPL_1:78
]:3.97
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{663
}{\log_{20}
663}-\frac{318}{\log_{20}318})=95.4\)
Status
Protein1
Protein2
d
d1/2
Query variables
4IGF_1
3HWR_1
119
114.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]